

Department of Robotics R&D Outputs and Current Activities

Václav Krys

Content

- 1) General information about the department
- 2) Overview of solved robotic projects
- 3) Current research projects
- 4) Robotic infrastructure at our department
- 5) Possible topics for future projects or cooperation

1) General information about the department

VSB TECHNICAL	FACULTY	DEPARTMENT
UNIVERSITY	OF MECHANICAL	OF ROBOTICS
'III' OF OSTRAVA	ENGINEERING	

Department of Robotics

- Our study programs are:
 - Robotics Bachelor (3 years)
 - Robotics Master (2 years)
 - Robotics Doctoral (4 years)
- We participate on study programs:
 - Mechatronics Bachelor (3 years)
 - Mechatronics Master (2 years)

5x Werner von Siemens awards (2000, 2008, 2010, 2012, 2019):

- 2x best diploma thesis
- 3x best Ph.D. thesis

OF ROBOTICS

Department of Robotics - staff

• 2 professors and 3 associate professors:

Prof. Head o	<mark>Dr. Ing. Petr Novák</mark> f Department	office: A740 phone: 3595
prof. I	<u>Dr. Ing. Vladimír Mostýn</u>	office: A738 phone: 4257
doc. I Deputy	ng. Zdenko Bobovský, Ph.D. Head of Department	office: A839 phone: 5309
<u>doc. I</u>	<u>ng. Tomáš Kot, Ph.D.</u>	office: C201 phone: 9363
doc. I	<u>ng. Milan Mihola, Ph.D.</u>	office: A840 phone: 5445

department of robotics

- 8 Lecturers (5 Ph.D. students)
- 6 Researchers (4 Ph.D. students)

2) Outcomes of finished projects

2.1) Telerescuer

- Goal: Develop a system for virtual teleportation (virtual immersion) of rescuers to the subterranean areas of a coal mine that have been closed due to a catastrophic event.
- EU programme of the Research fund for Coal and Steel
- 2014 2017

29/06/20

- Operating in explosive environment ATEX.
- Poland, Spain, Austria, Czech Republic

VSB TECHNICAL | FACULTY |||| UNIVERSITY | OF MECHANICAL | OF ROBOTICS |||| OF OSTRAVA | ENGINEERING |

2.2) TAROS

- Development of a manipulator for military mobile robot 6x6 WD, 1.5 ton.
- Control system for the teleoperated manipulator with automated functions.
- Precise control of the gripping force.
- HMI based on virtual reality.
- 2014 2016

VYSOKÉ UČENÍ

TECHNICKÉ V BRNĚ

2.3) Detector

- Development and verification of a SW tool for cardboard boxes detection in a ship container.
- Preliminary step for the development of an automatic container unloading system.

2.4) Cobots

Development of robotized cells with cobots for automotive companies.

Packaging of head lamps – Varroc.

Assembly operations – Brano.

Machine feeding with parts from bins – Continental.

2018 - 2020

29/06/20

VSB TECHNICAL FACULTY UNIVERSITY OF MECHANICAL OF ROBOTICS

2.5) Other realized projects

 VSB TECHNICAL
 FACULTY
 DEPARTMENT

 UNIVERSITY
 OF MECHANICAL
 OF ROBOTICS

 ENGINEERING
 OF ROBOTICS

29/06/20

3) Current research projects

3.1-1) Research Centre of Advanced Mechatronic Systems

- Project in the frame of the Operational Program Research, Development and Education -EF16_019/0000867.
- 2018 2022
- Conceptual design of robotic manipulators.
- Topological design of robotic arms.

Selection of an appropriate robot from a database and optimization of the robot base placement according to given trajectory based on kinematic parameters.

4. Industrial or Collaborative Robot

29/06/20 VSB TECHNICAL FACULTY UNIVERSITY OF MECHANICAL OF OSTRAVA

3.1-2) Research Centre of Advanced Mechatronic Systems

Optimization of manipulator base placement according to a given trajectory based on dynamic parameters. PSO and GA were tested for the optimization.

29/06/20 **VSB** TECHNICAL |||| UNIVERSITY OF MECHANICAL OF ROBOTICS

3.1-3) Research Centre of Advanced Mechatronic Systems

Synthesis of manipulator kinematic structure based on kinematic parameters.

Automatically suggests the smallest manipulator for the given trajectory, while keeping the defined fixed manipulator base position.

The **kinematic structure** is based on the common structure of many industrial robots (ABB, Kuka...).

Automatic Design Suggestion of a Custom Robotic Arm

VSB TECHNICAL | FACULTY |||| UNIVERSITY | OF MECHANICAL OF OSTRAVA | ENGINEERING

3.1-3) Research Centre of Advanced Mechatronic Systems

Synthesis of manipulator kinematic structure based on kinematic parameters.

Automatically suggests the smallest manipulator for the given trajectory, while keeping the defined fixed manipulator base position.

The **kinematic structure** is based on the common structure of many industrial robots (ABB, Kuka...).

3.1-4) Research Centre of Advanced Mechatronic Systems

Synthesis of optimal manipulator kinematic structure for given task based on dynamics parameters.

Evolutional algorithm is used for the synthesis.

Manipulator is generated from Schunk modules PR70 and PW70.

fitness value 49.014

3.1-4) Research Centre of Advanced Mechatronic Systems

Condition to fulfil the required TCP position on the trajectory, collision objects and multiple connection links

VSB TECHNICAL	FACULTY	DEPARTMENT
UNIVERSITY	OF MECHANICAL	OF ROBOTICS
'III' OF OSTRAVA	ENGINEERING	

3.1-5) Research Centre of Advanced Mechatronic Systems

Improve repeatable positioning accuracy

VSB TECHNICAL	FACULTY	DEPARTMENT
UNIVERSITY	OF MECHANICAL	OF ROBOTICS
'III' OF OSTRAVA	ENGINEERING	

3.1-6) Research Centre of Advanced Mechatronic Systems

Using genetic algorithms in design and optimization of mobile robot kinematics

VSB TECHNICAL	FACULTY	DEPARTMENT
UNIVERSITY	OF MECHANICAL	OF ROBOTICS
'III' OF OSTRAVA	ENGINEERING	

3.2) Research Platform Focused on Industry 4.0 and Robotics in Ostrava Agglomeration 2018 - 2022

Research activities focused on Industry 4.0 and robotics with companies based in agglomeration of Ostrava. Research topics:

- Research of physical principles, technical and program resources for on-line optimization of the robot trajectory in a dynamically changing environment with obstacles.
- Research of technical instruments for assisted assembly with a collaborative robot.
- Research of technical and program instruments for inspection of 3D shapes of components during production and manipulation.

VSB TECHNICAL

🖉 Fraunhofer

IWU

brose

• 2018 - 2022

3.2-1) Research Platform Focused on Industry 4.0 and Robotics in Ostrava Agglomeration 2018 - 2022

Detection of camera position and orientation in manipulator coordinate

3.2-2) Research Platform Focused on Industry 4.0 and Robotics in **Ostrava Agglomeration 2018 - 2022**

System for identifying a part (3D object) based on a 3D scan

29/06/20

3.2-3) Research Platform Focused on Industry 4.0 and Robotics in Ostrava Agglomeration 2018 - 2022

Creating 3D models of objects using photogrammetry technologies and 2D laser scanner.

3.2-4) Research Platform Focused on Industry 4.0 and Robotics in Ostrava Agglomeration 2018 - 2022

Dynamic path planning for industrial robot.

29/06/20

3.2-5) Research Platform Focused on Industry 4.0 and Robotics in Ostrava Agglomeration 2018 - 2022

Research of methods for assisted assembly with collaborative robot.

3.3) National Competence Centre of Mechatronics and Smart Technologies for Mechanical Engineering

- Mechatronics, Smart Technologies and Digital Twins.
- Cobots workplace with dynamically moving obstacles. Their detection, description and on-line avoidance.
- SW tool for a selection of an applicable robot (industrial or collaborative) for given task and workstation layout.
- 2019 2020
- More information: <u>http://www.nccmestec.com/en-index.html</u>

4) Robotic infrastructure at our department

4.1) Industrial Robotics

1x ABB IRB 1660ID 1x ABB IRB 1600 2x ABB IRB 1200

1x ABB IRB 360

3x ABB IRB 140

2x Mitsubishi RV2-AJ

1x ABB IRB 14000 YuMi

1x UR3

1x UR3e

29/06/20

1x UR10e

 VSB TECHNICAL
 FACULTY
 DEPARTMENT

 IIII
 UNIVERSITY
 OF MECHANICAL
 DF ROBOTICS

 OF OSTRAVA
 ENGINEERING
 OF ROBOTICS

4.2) Service robotics

- 1) MR Hercules
- 2) MR Marvin
- 3) MR Viper

29/06/20

- 4) Rover K3P4
- 5) Modular robot

 VSB
 TECHNICAL
 FACULTY
 DEPARTMENT

 IIII
 UNIVERSITY
 OF MECHANICAL
 OF ROBOTICS

 OF OSTRAVA
 ENGINEERING
 OF ROBOTICS

5) Possible topics for future projects or cooperation

5.1) Possible topics for future projects

- Tools for design and optimization of robotic cells and production lines
- Tools and methodologies for robotic manipulators accuracy enhancement
- Optimization cost/fitness function development
- Automated system for containers un/loading
- Machine perception object recognition
- Motion planning in dynamic environment
- Robot control by gestures
- Collaborative robotics

5.2) Support of our competition team

- Our team RoverOva ERC Competition (<u>http://rover.vsb.cz/</u>)
- 5th place in 2018
- 3rd place in 2019

VSB TECHNICAL | FACULTY | DEPARTMENT |||| UNIVERSITY OF MECHANICAL OF ROBOTICS OF OSTRAVA ENGINEERING

MCAE

PLINE

 VSB
 TECHNICAL
 FACULTY
 DEPARTMENT

 IIII
 UNIVERSITY
 OF MECHANICAL
 DEPARTMENT

 OF OSTRAVA
 ENGINEERING
 OF ROBOTICS

Thank you for your attention

Václav Krys

+420 597 325 310

vaclav.krys@vsb.cz

http://robot.vsb.cz